Vulnerabilities (CVE)

Total 258583 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-42148 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: bnx2x: Fix multiple UBSAN array-index-out-of-bounds Fix UBSAN warnings that occur when using a system with 32 physical cpu cores or more, or when the user defines a number of Ethernet queues greater than or equal to FP_SB_MAX_E1x using the num_queues module parameter. Currently there is a read/write out of bounds that occurs on the array "struct stats_query_entry query" present inside the "bnx2x_fw_stats_req" struct in "drivers/net/ethernet/broadcom/bnx2x/bnx2x.h". Looking at the definition of the "struct stats_query_entry query" array: struct stats_query_entry query[FP_SB_MAX_E1x+ BNX2X_FIRST_QUEUE_QUERY_IDX]; FP_SB_MAX_E1x is defined as the maximum number of fast path interrupts and has a value of 16, while BNX2X_FIRST_QUEUE_QUERY_IDX has a value of 3 meaning the array has a total size of 19. Since accesses to "struct stats_query_entry query" are offset-ted by BNX2X_FIRST_QUEUE_QUERY_IDX, that means that the total number of Ethernet queues should not exceed FP_SB_MAX_E1x (16). However one of these queues is reserved for FCOE and thus the number of Ethernet queues should be set to [FP_SB_MAX_E1x -1] (15) if FCOE is enabled or [FP_SB_MAX_E1x] (16) if it is not. This is also described in a comment in the source code in drivers/net/ethernet/broadcom/bnx2x/bnx2x.h just above the Macro definition of FP_SB_MAX_E1x. Below is the part of this explanation that it important for this patch /* * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is * control by the number of fast-path status blocks supported by the * device (HW/FW). Each fast-path status block (FP-SB) aka non-default * status block represents an independent interrupts context that can * serve a regular L2 networking queue. However special L2 queues such * as the FCoE queue do not require a FP-SB and other components like * the CNIC may consume FP-SB reducing the number of possible L2 queues * * If the maximum number of FP-SB available is X then: * a. If CNIC is supported it consumes 1 FP-SB thus the max number of * regular L2 queues is Y=X-1 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor) * c. If the FCoE L2 queue is supported the actual number of L2 queues * is Y+1 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for * slow-path interrupts) or Y+2 if CNIC is supported (one additional * FP interrupt context for the CNIC). * e. The number of HW context (CID count) is always X or X+1 if FCoE * L2 queue is supported. The cid for the FCoE L2 queue is always X. */ However this driver also supports NICs that use the E2 controller which can handle more queues due to having more FP-SB represented by FP_SB_MAX_E2. Looking at the commits when the E2 support was added, it was originally using the E1x parameters: commit f2e0899f0f27 ("bnx2x: Add 57712 support"). Back then FP_SB_MAX_E2 was set to 16 the same as E1x. However the driver was later updated to take full advantage of the E2 instead of having it be limited to the capabilities of the E1x. But as far as we can tell, the array "stats_query_entry query" was still limited to using the FP-SB available to the E1x cards as part of an oversignt when the driver was updated to take full advantage of the E2, and now with the driver being aware of the greater queue size supported by E2 NICs, it causes the UBSAN warnings seen in the stack traces below. This patch increases the size of the "stats_query_entry query" array by replacing FP_SB_MAX_E1x with FP_SB_MAX_E2 to be large enough to handle both types of NICs. Stack traces: UBSAN: array-index-out-of-bounds in drivers/net/ethernet/broadcom/bnx2x/bnx2x_stats.c:1529:11 index 20 is out of range for type 'stats_query_entry [19]' CPU: 12 PID: 858 Comm: systemd-network Not tainted 6.9.0-060900rc7-generic #202405052133 Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 ---truncated---
CVE-2024-42115 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: jffs2: Fix potential illegal address access in jffs2_free_inode During the stress testing of the jffs2 file system,the following abnormal printouts were found: [ 2430.649000] Unable to handle kernel paging request at virtual address 0069696969696948 [ 2430.649622] Mem abort info: [ 2430.649829] ESR = 0x96000004 [ 2430.650115] EC = 0x25: DABT (current EL), IL = 32 bits [ 2430.650564] SET = 0, FnV = 0 [ 2430.650795] EA = 0, S1PTW = 0 [ 2430.651032] FSC = 0x04: level 0 translation fault [ 2430.651446] Data abort info: [ 2430.651683] ISV = 0, ISS = 0x00000004 [ 2430.652001] CM = 0, WnR = 0 [ 2430.652558] [0069696969696948] address between user and kernel address ranges [ 2430.653265] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 2430.654512] CPU: 2 PID: 20919 Comm: cat Not tainted 5.15.25-g512f31242bf6 #33 [ 2430.655008] Hardware name: linux,dummy-virt (DT) [ 2430.655517] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 2430.656142] pc : kfree+0x78/0x348 [ 2430.656630] lr : jffs2_free_inode+0x24/0x48 [ 2430.657051] sp : ffff800009eebd10 [ 2430.657355] x29: ffff800009eebd10 x28: 0000000000000001 x27: 0000000000000000 [ 2430.658327] x26: ffff000038f09d80 x25: 0080000000000000 x24: ffff800009d38000 [ 2430.658919] x23: 5a5a5a5a5a5a5a5a x22: ffff000038f09d80 x21: ffff8000084f0d14 [ 2430.659434] x20: ffff0000bf9a6ac0 x19: 0169696969696940 x18: 0000000000000000 [ 2430.659969] x17: ffff8000b6506000 x16: ffff800009eec000 x15: 0000000000004000 [ 2430.660637] x14: 0000000000000000 x13: 00000001000820a1 x12: 00000000000d1b19 [ 2430.661345] x11: 0004000800000000 x10: 0000000000000001 x9 : ffff8000084f0d14 [ 2430.662025] x8 : ffff0000bf9a6b40 x7 : ffff0000bf9a6b48 x6 : 0000000003470302 [ 2430.662695] x5 : ffff00002e41dcc0 x4 : ffff0000bf9aa3b0 x3 : 0000000003470342 [ 2430.663486] x2 : 0000000000000000 x1 : ffff8000084f0d14 x0 : fffffc0000000000 [ 2430.664217] Call trace: [ 2430.664528] kfree+0x78/0x348 [ 2430.664855] jffs2_free_inode+0x24/0x48 [ 2430.665233] i_callback+0x24/0x50 [ 2430.665528] rcu_do_batch+0x1ac/0x448 [ 2430.665892] rcu_core+0x28c/0x3c8 [ 2430.666151] rcu_core_si+0x18/0x28 [ 2430.666473] __do_softirq+0x138/0x3cc [ 2430.666781] irq_exit+0xf0/0x110 [ 2430.667065] handle_domain_irq+0x6c/0x98 [ 2430.667447] gic_handle_irq+0xac/0xe8 [ 2430.667739] call_on_irq_stack+0x28/0x54 The parameter passed to kfree was 5a5a5a5a, which corresponds to the target field of the jffs_inode_info structure. It was found that all variables in the jffs_inode_info structure were 5a5a5a5a, except for the first member sem. It is suspected that these variables are not initialized because they were set to 5a5a5a5a during memory testing, which is meant to detect uninitialized memory.The sem variable is initialized in the function jffs2_i_init_once, while other members are initialized in the function jffs2_init_inode_info. The function jffs2_init_inode_info is called after iget_locked, but in the iget_locked function, the destroy_inode process is triggered, which releases the inode and consequently, the target member of the inode is not initialized.In concurrent high pressure scenarios, iget_locked may enter the destroy_inode branch as described in the code. Since the destroy_inode functionality of jffs2 only releases the target, the fix method is to set target to NULL in jffs2_i_init_once.
CVE-2024-3219 2024-07-30 N/A N/A
There is a MEDIUM severity vulnerability affecting CPython. The “socket” module provides a pure-Python fallback to the socket.socketpair() function for platforms that don’t support AF_UNIX, such as Windows. This pure-Python implementation uses AF_INET or AF_INET6 to create a local connected pair of sockets. The connection between the two sockets was not verified before passing the two sockets back to the user, which leaves the server socket vulnerable to a connection race from a malicious local peer. Platforms that support AF_UNIX such as Linux and macOS are not affected by this vulnerability. Versions prior to CPython 3.5 are not affected due to the vulnerable API not being included.
CVE-2024-40833 2024-07-30 N/A N/A
A logic issue was addressed with improved checks. This issue is fixed in macOS Sonoma 14.6, iOS 16.7.9 and iPadOS 16.7.9, macOS Monterey 12.7.6, macOS Ventura 13.6.8. A shortcut may be able to use sensitive data with certain actions without prompting the user.
CVE-2024-3669 2024-07-30 N/A N/A
The Web Directory Free WordPress plugin before 1.7.2 does not sanitise and escape a parameter before outputting it back in the page, leading to a Reflected Cross-Site Scripting which could be used against high privilege users such as admin
CVE-2024-7222 2024-07-30 6.5 MEDIUM 6.3 MEDIUM
A vulnerability, which was classified as critical, was found in SourceCodester Lot Reservation Management System 1.0. Affected is an unknown function of the file /home.php. The manipulation of the argument type leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. VDB-272802 is the identifier assigned to this vulnerability.
CVE-2024-1286 2024-07-30 N/A N/A
The pmpro-membership-maps WordPress plugin before 0.7 does not prevent users with at least the contributor role from leaking sensitive information about users with a membership on the site.
CVE-2024-5808 2024-07-30 N/A N/A
The WP Ajax Contact Form WordPress plugin through 2.2.2 does not have CSRF check in place when deleting emails from the email list, which could allow attackers to make a logged in admin perform such action via a CSRF attack
CVE-2024-42106 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: inet_diag: Initialize pad field in struct inet_diag_req_v2 KMSAN reported uninit-value access in raw_lookup() [1]. Diag for raw sockets uses the pad field in struct inet_diag_req_v2 for the underlying protocol. This field corresponds to the sdiag_raw_protocol field in struct inet_diag_req_raw. inet_diag_get_exact_compat() converts inet_diag_req to inet_diag_req_v2, but leaves the pad field uninitialized. So the issue occurs when raw_lookup() accesses the sdiag_raw_protocol field. Fix this by initializing the pad field in inet_diag_get_exact_compat(). Also, do the same fix in inet_diag_dump_compat() to avoid the similar issue in the future. [1] BUG: KMSAN: uninit-value in raw_lookup net/ipv4/raw_diag.c:49 [inline] BUG: KMSAN: uninit-value in raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71 raw_lookup net/ipv4/raw_diag.c:49 [inline] raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71 raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99 inet_diag_cmd_exact+0x7d9/0x980 inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline] inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564 sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x332/0x3d0 net/socket.c:745 ____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2639 __sys_sendmsg net/socket.c:2668 [inline] __do_sys_sendmsg net/socket.c:2677 [inline] __se_sys_sendmsg net/socket.c:2675 [inline] __x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675 x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was stored to memory at: raw_sock_get+0x650/0x800 net/ipv4/raw_diag.c:71 raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99 inet_diag_cmd_exact+0x7d9/0x980 inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline] inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564 sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x332/0x3d0 net/socket.c:745 ____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2639 __sys_sendmsg net/socket.c:2668 [inline] __do_sys_sendmsg net/socket.c:2677 [inline] __se_sys_sendmsg net/socket.c:2675 [inline] __x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675 x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Local variable req.i created at: inet_diag_get_exact_compat net/ipv4/inet_diag.c:1396 [inline] inet_diag_rcv_msg_compat+0x2a6/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 CPU: 1 PID: 8888 Comm: syz-executor.6 Not tainted 6.10.0-rc4-00217-g35bb670d65fc #32 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
CVE-2024-41696 2024-07-30 N/A 7.5 HIGH
Priority PRI WEB Portal Add-On for Priority ERP on prem - CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
CVE-2024-40821 2024-07-30 N/A N/A
An access issue was addressed with additional sandbox restrictions. This issue is fixed in macOS Sonoma 14.6, macOS Monterey 12.7.6, macOS Ventura 13.6.8. Third party app extensions may not receive the correct sandbox restrictions.
CVE-2024-42117 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: ASSERT when failing to find index by plane/stream id [WHY] find_disp_cfg_idx_by_plane_id and find_disp_cfg_idx_by_stream_id returns an array index and they return -1 when not found; however, -1 is not a valid index number. [HOW] When this happens, call ASSERT(), and return a positive number (which is fewer than callers' array size) instead. This fixes 4 OVERRUN and 2 NEGATIVE_RETURNS issues reported by Coverity.
CVE-2024-40811 2024-07-30 N/A N/A
The issue was addressed with improved checks. This issue is fixed in macOS Sonoma 14.6. An app may be able to modify protected parts of the file system.
CVE-2024-42119 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip finding free audio for unknown engine_id [WHY] ENGINE_ID_UNKNOWN = -1 and can not be used as an array index. Plus, it also means it is uninitialized and does not need free audio. [HOW] Skip and return NULL. This fixes 2 OVERRUN issues reported by Coverity.
CVE-2024-7223 2024-07-30 6.5 MEDIUM 6.3 MEDIUM
A vulnerability has been found in SourceCodester Lot Reservation Management System 1.0 and classified as critical. Affected by this vulnerability is an unknown functionality of the file /view_model.php. The manipulation of the argument id leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-272803.
CVE-2024-27883 2024-07-30 N/A N/A
A permissions issue was addressed with additional restrictions. This issue is fixed in macOS Sonoma 14.6, macOS Monterey 12.7.6, macOS Ventura 13.6.8. An app may be able to modify protected parts of the file system.
CVE-2024-42223 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: tda10048: Fix integer overflow state->xtal_hz can be up to 16M, so it can overflow a 32 bit integer when multiplied by pll_mfactor. Create a new 64 bit variable to hold the calculations.
CVE-2024-6230 2024-07-30 N/A N/A
The ?????? ?????? ?????? WordPress plugin through 2.9.8 does not have CSRF check in place when resetting its form fields, which could allow attackers to make a logged in admin perform such action via a CSRF attack
CVE-2024-42157 2024-07-30 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe sensitive data on failure Wipe sensitive data from stack also if the copy_to_user() fails.
CVE-2024-40806 2024-07-30 N/A N/A
An out-of-bounds read issue was addressed with improved input validation. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, macOS Ventura 13.6.8, macOS Monterey 12.7.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing a maliciously crafted file may lead to unexpected app termination.