Total
5103 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-42720 | 3 Debian, Fedoraproject, Linux | 3 Debian Linux, Fedora, Linux Kernel | 2023-11-07 | N/A | 7.8 HIGH |
Various refcounting bugs in the multi-BSS handling in the mac80211 stack in the Linux kernel 5.1 through 5.19.x before 5.19.16 could be used by local attackers (able to inject WLAN frames) to trigger use-after-free conditions to potentially execute code. | |||||
CVE-2022-42719 | 3 Debian, Fedoraproject, Linux | 3 Debian Linux, Fedora, Linux Kernel | 2023-11-07 | N/A | 8.8 HIGH |
A use-after-free in the mac80211 stack when parsing a multi-BSSID element in the Linux kernel 5.2 through 5.19.x before 5.19.16 could be used by attackers (able to inject WLAN frames) to crash the kernel and potentially execute code. | |||||
CVE-2022-42318 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42317 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42316 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42315 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42314 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42313 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42312 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42311 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-41804 | 3 Debian, Fedoraproject, Intel | 382 Debian Linux, Fedora, Xeon Bronze 3408u and 379 more | 2023-11-07 | N/A | 6.7 MEDIUM |
Unauthorized error injection in Intel(R) SGX or Intel(R) TDX for some Intel(R) Xeon(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access. | |||||
CVE-2022-41751 | 3 Debian, Fedoraproject, Jhead Project | 3 Debian Linux, Fedora, Jhead | 2023-11-07 | N/A | 7.8 HIGH |
Jhead 3.06.0.1 allows attackers to execute arbitrary OS commands by placing them in a JPEG filename and then using the regeneration -rgt50 option. | |||||
CVE-2022-41742 | 3 Debian, F5, Fedoraproject | 4 Debian Linux, Nginx, Nginx Ingress Controller and 1 more | 2023-11-07 | N/A | 7.1 HIGH |
NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to cause a worker process crash, or might result in worker process memory disclosure by using a specially crafted audio or video file. The issue affects only NGINX products that are built with the module ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | |||||
CVE-2022-41741 | 3 Debian, F5, Fedoraproject | 4 Debian Linux, Nginx, Nginx Ingress Controller and 1 more | 2023-11-07 | N/A | 7.8 HIGH |
NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to corrupt NGINX worker memory, resulting in its termination or potential other impact using a specially crafted audio or video file. The issue affects only NGINX products that are built with the ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | |||||
CVE-2022-41727 | 2 Fedoraproject, Golang | 3 Fedora, Image, Tiff | 2023-11-07 | N/A | 5.5 MEDIUM |
An attacker can craft a malformed TIFF image which will consume a significant amount of memory when passed to DecodeConfig. This could lead to a denial of service. | |||||
CVE-2022-41674 | 3 Debian, Fedoraproject, Linux | 3 Debian Linux, Fedora, Linux Kernel | 2023-11-07 | N/A | 8.1 HIGH |
An issue was discovered in the Linux kernel before 5.19.16. Attackers able to inject WLAN frames could cause a buffer overflow in the ieee80211_bss_info_update function in net/mac80211/scan.c. | |||||
CVE-2022-41556 | 2 Fedoraproject, Lighttpd | 2 Fedora, Lighttpd | 2023-11-07 | N/A | 7.5 HIGH |
A resource leak in gw_backend.c in lighttpd 1.4.56 through 1.4.66 could lead to a denial of service (connection-slot exhaustion) after a large amount of anomalous TCP behavior by clients. It is related to RDHUP mishandling in certain HTTP/1.1 chunked situations. Use of mod_fastcgi is, for example, affected. This is fixed in 1.4.67. | |||||
CVE-2022-41322 | 2 Fedoraproject, Kitty Project | 2 Fedora, Kitty | 2023-11-07 | N/A | 7.8 HIGH |
In Kitty before 0.26.2, insufficient validation in the desktop notification escape sequence can lead to arbitrary code execution. The user must display attacker-controlled content in the terminal, then click on a notification popup. | |||||
CVE-2022-40964 | 3 Debian, Fedoraproject, Intel | 17 Debian Linux, Fedora, Killer and 14 more | 2023-11-07 | N/A | 6.7 MEDIUM |
Improper access control for some Intel(R) PROSet/Wireless WiFi and Killer(TM) WiFi software may allow a privileged user to potentially enable escalation of privilege via local access. | |||||
CVE-2022-40674 | 3 Debian, Fedoraproject, Libexpat Project | 3 Debian Linux, Fedora, Libexpat | 2023-11-07 | N/A | 8.1 HIGH |
libexpat before 2.4.9 has a use-after-free in the doContent function in xmlparse.c. |