Filtered by vendor Openssl
Subscribe
Total
255 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2016-6302 | 2 Openssl, Oracle | 3 Openssl, Linux, Solaris | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
The tls_decrypt_ticket function in ssl/t1_lib.c in OpenSSL before 1.1.0 does not consider the HMAC size during validation of the ticket length, which allows remote attackers to cause a denial of service via a ticket that is too short. | |||||
CVE-2016-2842 | 1 Openssl | 1 Openssl | 2023-11-07 | 10.0 HIGH | 9.8 CRITICAL |
The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799. | |||||
CVE-2016-2182 | 3 Hp, Openssl, Oracle | 6 Icewall Federation Agent, Icewall Mcrp, Icewall Sso and 3 more | 2023-11-07 | 7.5 HIGH | 9.8 CRITICAL |
The BN_bn2dec function in crypto/bn/bn_print.c in OpenSSL before 1.1.0 does not properly validate division results, which allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. | |||||
CVE-2016-2181 | 2 Openssl, Oracle | 2 Openssl, Linux | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
The Anti-Replay feature in the DTLS implementation in OpenSSL before 1.1.0 mishandles early use of a new epoch number in conjunction with a large sequence number, which allows remote attackers to cause a denial of service (false-positive packet drops) via spoofed DTLS records, related to rec_layer_d1.c and ssl3_record.c. | |||||
CVE-2016-2179 | 2 Openssl, Oracle | 2 Openssl, Linux | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
The DTLS implementation in OpenSSL before 1.1.0 does not properly restrict the lifetime of queue entries associated with unused out-of-order messages, which allows remote attackers to cause a denial of service (memory consumption) by maintaining many crafted DTLS sessions simultaneously, related to d1_lib.c, statem_dtls.c, statem_lib.c, and statem_srvr.c. | |||||
CVE-2016-2178 | 6 Canonical, Debian, Nodejs and 3 more | 7 Ubuntu Linux, Debian Linux, Node.js and 4 more | 2023-11-07 | 2.1 LOW | 5.5 MEDIUM |
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack. | |||||
CVE-2016-2177 | 3 Hp, Openssl, Oracle | 6 Icewall Mcrp, Icewall Sso, Icewall Sso Agent Option and 3 more | 2023-11-07 | 7.5 HIGH | 9.8 CRITICAL |
OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-buffer boundary checks, which might allow remote attackers to cause a denial of service (integer overflow and application crash) or possibly have unspecified other impact by leveraging unexpected malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c. | |||||
CVE-2016-2176 | 1 Openssl | 1 Openssl | 2023-11-07 | 6.4 MEDIUM | 8.2 HIGH |
The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service (buffer over-read) via crafted EBCDIC ASN.1 data. | |||||
CVE-2016-2109 | 2 Openssl, Redhat | 8 Openssl, Enterprise Linux Desktop, Enterprise Linux Hpc Node and 5 more | 2023-11-07 | 7.8 HIGH | 7.5 HIGH |
The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (memory consumption) via a short invalid encoding. | |||||
CVE-2016-2108 | 3 Google, Openssl, Redhat | 9 Android, Openssl, Enterprise Linux Desktop and 6 more | 2023-11-07 | 10.0 HIGH | 9.8 CRITICAL |
The ASN.1 implementation in OpenSSL before 1.0.1o and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue. | |||||
CVE-2016-2106 | 2 Openssl, Redhat | 8 Openssl, Enterprise Linux Desktop, Enterprise Linux Hpc Node and 5 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
Integer overflow in the EVP_EncryptUpdate function in crypto/evp/evp_enc.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of data. | |||||
CVE-2016-2105 | 8 Apple, Canonical, Debian and 5 more | 15 Mac Os X, Ubuntu Linux, Debian Linux and 12 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data. | |||||
CVE-2016-0799 | 2 Openssl, Pulsesecure | 3 Openssl, Client, Steel Belted Radius | 2023-11-07 | 10.0 HIGH | 9.8 CRITICAL |
The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842. | |||||
CVE-2016-0797 | 4 Canonical, Debian, Nodejs and 1 more | 4 Ubuntu Linux, Debian Linux, Node.js and 1 more | 2023-11-07 | 5.0 MEDIUM | 7.5 HIGH |
Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c. | |||||
CVE-2016-0705 | 5 Canonical, Debian, Google and 2 more | 5 Ubuntu Linux, Debian Linux, Android and 2 more | 2023-11-07 | 10.0 HIGH | 9.8 CRITICAL |
Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key. | |||||
CVE-2016-0704 | 1 Openssl | 1 Openssl | 2023-11-07 | 4.3 MEDIUM | 5.9 MEDIUM |
An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | |||||
CVE-2016-0703 | 1 Openssl | 1 Openssl | 2023-11-07 | 4.3 MEDIUM | 5.9 MEDIUM |
The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | |||||
CVE-2016-0702 | 4 Canonical, Debian, Nodejs and 1 more | 4 Ubuntu Linux, Debian Linux, Node.js and 1 more | 2023-11-07 | 1.9 LOW | 5.1 MEDIUM |
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | |||||
CVE-2015-3197 | 2 Openssl, Oracle | 6 Openssl, Exalogic Infrastructure, Oss Support Tools and 3 more | 2023-11-07 | 4.3 MEDIUM | 5.9 MEDIUM |
ssl/s2_srvr.c in OpenSSL 1.0.1 before 1.0.1r and 1.0.2 before 1.0.2f does not prevent use of disabled ciphers, which makes it easier for man-in-the-middle attackers to defeat cryptographic protection mechanisms by performing computations on SSLv2 traffic, related to the get_client_master_key and get_client_hello functions. | |||||
CVE-2015-3196 | 7 Canonical, Debian, Fedoraproject and 4 more | 13 Ubuntu Linux, Debian Linux, Fedora and 10 more | 2023-11-07 | 4.3 MEDIUM | N/A |
ssl/s3_clnt.c in OpenSSL 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1p, and 1.0.2 before 1.0.2d, when used for a multi-threaded client, writes the PSK identity hint to an incorrect data structure, which allows remote servers to cause a denial of service (race condition and double free) via a crafted ServerKeyExchange message. |