Vulnerabilities (CVE)

Total 258583 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-41050 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: cachefiles: cyclic allocation of msg_id to avoid reuse Reusing the msg_id after a maliciously completed reopen request may cause a read request to remain unprocessed and result in a hung, as shown below: t1 | t2 | t3 ------------------------------------------------- cachefiles_ondemand_select_req cachefiles_ondemand_object_is_close(A) cachefiles_ondemand_set_object_reopening(A) queue_work(fscache_object_wq, &info->work) ondemand_object_worker cachefiles_ondemand_init_object(A) cachefiles_ondemand_send_req(OPEN) // get msg_id 6 wait_for_completion(&req_A->done) cachefiles_ondemand_daemon_read // read msg_id 6 req_A cachefiles_ondemand_get_fd copy_to_user // Malicious completion msg_id 6 copen 6,-1 cachefiles_ondemand_copen complete(&req_A->done) // will not set the object to close // because ondemand_id && fd is valid. // ondemand_object_worker() is done // but the object is still reopening. // new open req_B cachefiles_ondemand_init_object(B) cachefiles_ondemand_send_req(OPEN) // reuse msg_id 6 process_open_req copen 6,A.size // The expected failed copen was executed successfully Expect copen to fail, and when it does, it closes fd, which sets the object to close, and then close triggers reopen again. However, due to msg_id reuse resulting in a successful copen, the anonymous fd is not closed until the daemon exits. Therefore read requests waiting for reopen to complete may trigger hung task. To avoid this issue, allocate the msg_id cyclically to avoid reusing the msg_id for a very short duration of time.
CVE-2024-41033 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: cachestat: do not flush stats in recency check syzbot detects that cachestat() is flushing stats, which can sleep, in its RCU read section (see [1]). This is done in the workingset_test_recent() step (which checks if the folio's eviction is recent). Move the stat flushing step to before the RCU read section of cachestat, and skip stat flushing during the recency check. [1]: https://lore.kernel.org/cgroups/000000000000f71227061bdf97e0@google.com/
CVE-2024-41060 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: check bo_va->bo is non-NULL before using it The call to radeon_vm_clear_freed might clear bo_va->bo, so we have to check it before dereferencing it.
CVE-2024-41078 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix quota root leak after quota disable failure If during the quota disable we fail when cleaning the quota tree or when deleting the root from the root tree, we jump to the 'out' label without ever dropping the reference on the quota root, resulting in a leak of the root since fs_info->quota_root is no longer pointing to the root (we have set it to NULL just before those steps). Fix this by always doing a btrfs_put_root() call under the 'out' label. This is a problem that exists since qgroups were first added in 2012 by commit bed92eae26cc ("Btrfs: qgroup implementation and prototypes"), but back then we missed a kfree on the quota root and free_extent_buffer() calls on its root and commit root nodes, since back then roots were not yet reference counted.
CVE-2024-41640 2024-07-29 N/A N/A
Cross Site Scripting (XSS) vulnerability in AML Surety Eco up to 3.5 allows an attacker to run arbitrary code via crafted GET request using the id parameter.
CVE-2024-41092 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Fix potential UAF by revoke of fence registers CI has been sporadically reporting the following issue triggered by igt@i915_selftest@live@hangcheck on ADL-P and similar machines: <6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence ... <6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled <6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled <3> [414.070354] Unable to pin Y-tiled fence; err:-4 <3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active)) ... <4>[ 609.603992] ------------[ cut here ]------------ <2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301! <4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1 <4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023 <4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915] <4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915] ... <4>[ 609.604271] Call Trace: <4>[ 609.604273] <TASK> ... <4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915] <4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915] <4>[ 609.604977] force_unbind+0x24/0xa0 [i915] <4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915] <4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915] <4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915] <4>[ 609.605440] process_scheduled_works+0x351/0x690 ... In the past, there were similar failures reported by CI from other IGT tests, observed on other platforms. Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for idleness of vma->active via fence_update(). That commit introduced vma->fence->active in order for the fence_update() to be able to wait selectively on that one instead of vma->active since only idleness of fence registers was needed. But then, another commit 0d86ee35097a ("drm/i915/gt: Make fence revocation unequivocal") replaced the call to fence_update() in i915_vma_revoke_fence() with only fence_write(), and also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front. No justification was provided on why we might then expect idleness of vma->fence->active without first waiting on it. The issue can be potentially caused by a race among revocation of fence registers on one side and sequential execution of signal callbacks invoked on completion of a request that was using them on the other, still processed in parallel to revocation of those fence registers. Fix it by waiting for idleness of vma->fence->active in i915_vma_revoke_fence(). (cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1)
CVE-2024-41818 2024-07-29 N/A 7.5 HIGH
fast-xml-parser is an open source, pure javascript xml parser. a ReDOS exists on currency.js. This vulnerability is fixed in 4.4.1.
CVE-2024-41052 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Init the count variable in collecting hot-reset devices The count variable is used without initialization, it results in mistakes in the device counting and crashes the userspace if the get hot reset info path is triggered.
CVE-2024-41048 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: skmsg: Skip zero length skb in sk_msg_recvmsg When running BPF selftests (./test_progs -t sockmap_basic) on a Loongarch platform, the following kernel panic occurs: [...] Oops[#1]: CPU: 22 PID: 2824 Comm: test_progs Tainted: G OE 6.10.0-rc2+ #18 Hardware name: LOONGSON Dabieshan/Loongson-TC542F0, BIOS Loongson-UDK2018 ... ... ra: 90000000048bf6c0 sk_msg_recvmsg+0x120/0x560 ERA: 9000000004162774 copy_page_to_iter+0x74/0x1c0 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 0000000c (PPLV0 +PIE +PWE) EUEN: 00000007 (+FPE +SXE +ASXE -BTE) ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7) ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) BADV: 0000000000000040 PRID: 0014c011 (Loongson-64bit, Loongson-3C5000) Modules linked in: bpf_testmod(OE) xt_CHECKSUM xt_MASQUERADE xt_conntrack Process test_progs (pid: 2824, threadinfo=0000000000863a31, task=...) Stack : ... Call Trace: [<9000000004162774>] copy_page_to_iter+0x74/0x1c0 [<90000000048bf6c0>] sk_msg_recvmsg+0x120/0x560 [<90000000049f2b90>] tcp_bpf_recvmsg_parser+0x170/0x4e0 [<90000000049aae34>] inet_recvmsg+0x54/0x100 [<900000000481ad5c>] sock_recvmsg+0x7c/0xe0 [<900000000481e1a8>] __sys_recvfrom+0x108/0x1c0 [<900000000481e27c>] sys_recvfrom+0x1c/0x40 [<9000000004c076ec>] do_syscall+0x8c/0xc0 [<9000000003731da4>] handle_syscall+0xc4/0x160 Code: ... ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Fatal exception Kernel relocated by 0x3510000 .text @ 0x9000000003710000 .data @ 0x9000000004d70000 .bss @ 0x9000000006469400 ---[ end Kernel panic - not syncing: Fatal exception ]--- [...] This crash happens every time when running sockmap_skb_verdict_shutdown subtest in sockmap_basic. This crash is because a NULL pointer is passed to page_address() in the sk_msg_recvmsg(). Due to the different implementations depending on the architecture, page_address(NULL) will trigger a panic on Loongarch platform but not on x86 platform. So this bug was hidden on x86 platform for a while, but now it is exposed on Loongarch platform. The root cause is that a zero length skb (skb->len == 0) was put on the queue. This zero length skb is a TCP FIN packet, which was sent by shutdown(), invoked in test_sockmap_skb_verdict_shutdown(): shutdown(p1, SHUT_WR); In this case, in sk_psock_skb_ingress_enqueue(), num_sge is zero, and no page is put to this sge (see sg_set_page in sg_set_page), but this empty sge is queued into ingress_msg list. And in sk_msg_recvmsg(), this empty sge is used, and a NULL page is got by sg_page(sge). Pass this NULL page to copy_page_to_iter(), which passes it to kmap_local_page() and to page_address(), then kernel panics. To solve this, we should skip this zero length skb. So in sk_msg_recvmsg(), if copy is zero, that means it's a zero length skb, skip invoking copy_page_to_iter(). We are using the EFAULT return triggered by copy_page_to_iter to check for is_fin in tcp_bpf.c.
CVE-2024-41089 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_hd_modes In nv17_tv_get_hd_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a possible NULL pointer dereference on failure of drm_mode_duplicate(). The same applies to drm_cvt_mode(). Add a check to avoid null pointer dereference.
CVE-2024-41057 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie() We got the following issue in our fault injection stress test: ================================================================== BUG: KASAN: slab-use-after-free in cachefiles_withdraw_cookie+0x4d9/0x600 Read of size 8 at addr ffff888118efc000 by task kworker/u78:0/109 CPU: 13 PID: 109 Comm: kworker/u78:0 Not tainted 6.8.0-dirty #566 Call Trace: <TASK> kasan_report+0x93/0xc0 cachefiles_withdraw_cookie+0x4d9/0x600 fscache_cookie_state_machine+0x5c8/0x1230 fscache_cookie_worker+0x91/0x1c0 process_one_work+0x7fa/0x1800 [...] Allocated by task 117: kmalloc_trace+0x1b3/0x3c0 cachefiles_acquire_volume+0xf3/0x9c0 fscache_create_volume_work+0x97/0x150 process_one_work+0x7fa/0x1800 [...] Freed by task 120301: kfree+0xf1/0x2c0 cachefiles_withdraw_cache+0x3fa/0x920 cachefiles_put_unbind_pincount+0x1f6/0x250 cachefiles_daemon_release+0x13b/0x290 __fput+0x204/0xa00 task_work_run+0x139/0x230 do_exit+0x87a/0x29b0 [...] ================================================================== Following is the process that triggers the issue: p1 | p2 ------------------------------------------------------------ fscache_begin_lookup fscache_begin_volume_access fscache_cache_is_live(fscache_cache) cachefiles_daemon_release cachefiles_put_unbind_pincount cachefiles_daemon_unbind cachefiles_withdraw_cache fscache_withdraw_cache fscache_set_cache_state(cache, FSCACHE_CACHE_IS_WITHDRAWN); cachefiles_withdraw_objects(cache) fscache_wait_for_objects(fscache) atomic_read(&fscache_cache->object_count) == 0 fscache_perform_lookup cachefiles_lookup_cookie cachefiles_alloc_object refcount_set(&object->ref, 1); object->volume = volume fscache_count_object(vcookie->cache); atomic_inc(&fscache_cache->object_count) cachefiles_withdraw_volumes cachefiles_withdraw_volume fscache_withdraw_volume __cachefiles_free_volume kfree(cachefiles_volume) fscache_cookie_state_machine cachefiles_withdraw_cookie cache = object->volume->cache; // cachefiles_volume UAF !!! After setting FSCACHE_CACHE_IS_WITHDRAWN, wait for all the cookie lookups to complete first, and then wait for fscache_cache->object_count == 0 to avoid the cookie exiting after the volume has been freed and triggering the above issue. Therefore call fscache_withdraw_volume() before calling cachefiles_withdraw_objects(). This way, after setting FSCACHE_CACHE_IS_WITHDRAWN, only the following two cases will occur: 1) fscache_begin_lookup fails in fscache_begin_volume_access(). 2) fscache_withdraw_volume() will ensure that fscache_count_object() has been executed before calling fscache_wait_for_objects().
CVE-2024-41042 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: prefer nft_chain_validate nft_chain_validate already performs loop detection because a cycle will result in a call stack overflow (ctx->level >= NFT_JUMP_STACK_SIZE). It also follows maps via ->validate callback in nft_lookup, so there appears no reason to iterate the maps again. nf_tables_check_loops() and all its helper functions can be removed. This improves ruleset load time significantly, from 23s down to 12s. This also fixes a crash bug. Old loop detection code can result in unbounded recursion: BUG: TASK stack guard page was hit at .... Oops: stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 4 PID: 1539 Comm: nft Not tainted 6.10.0-rc5+ #1 [..] with a suitable ruleset during validation of register stores. I can't see any actual reason to attempt to check for this from nft_validate_register_store(), at this point the transaction is still in progress, so we don't have a full picture of the rule graph. For nf-next it might make sense to either remove it or make this depend on table->validate_state in case we could catch an error earlier (for improved error reporting to userspace).
CVE-2024-41041 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: udp: Set SOCK_RCU_FREE earlier in udp_lib_get_port(). syzkaller triggered the warning [0] in udp_v4_early_demux(). In udp_v[46]_early_demux() and sk_lookup(), we do not touch the refcount of the looked-up sk and use sock_pfree() as skb->destructor, so we check SOCK_RCU_FREE to ensure that the sk is safe to access during the RCU grace period. Currently, SOCK_RCU_FREE is flagged for a bound socket after being put into the hash table. Moreover, the SOCK_RCU_FREE check is done too early in udp_v[46]_early_demux() and sk_lookup(), so there could be a small race window: CPU1 CPU2 ---- ---- udp_v4_early_demux() udp_lib_get_port() | |- hlist_add_head_rcu() |- sk = __udp4_lib_demux_lookup() | |- DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); `- sock_set_flag(sk, SOCK_RCU_FREE) We had the same bug in TCP and fixed it in commit 871019b22d1b ("net: set SOCK_RCU_FREE before inserting socket into hashtable"). Let's apply the same fix for UDP. [0]: WARNING: CPU: 0 PID: 11198 at net/ipv4/udp.c:2599 udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599 Modules linked in: CPU: 0 PID: 11198 Comm: syz-executor.1 Not tainted 6.9.0-g93bda33046e7 #13 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599 Code: c5 7a 15 fe bb 01 00 00 00 44 89 e9 31 ff d3 e3 81 e3 bf ef ff ff 89 de e8 2c 74 15 fe 85 db 0f 85 02 06 00 00 e8 9f 7a 15 fe <0f> 0b e8 98 7a 15 fe 49 8d 7e 60 e8 4f 39 2f fe 49 c7 46 60 20 52 RSP: 0018:ffffc9000ce3fa58 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8318c92c RDX: ffff888036ccde00 RSI: ffffffff8318c2f1 RDI: 0000000000000001 RBP: ffff88805a2dd6e0 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0001ffffffffffff R12: ffff88805a2dd680 R13: 0000000000000007 R14: ffff88800923f900 R15: ffff88805456004e FS: 00007fc449127640(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc449126e38 CR3: 000000003de4b002 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <TASK> ip_rcv_finish_core.constprop.0+0xbdd/0xd20 net/ipv4/ip_input.c:349 ip_rcv_finish+0xda/0x150 net/ipv4/ip_input.c:447 NF_HOOK include/linux/netfilter.h:314 [inline] NF_HOOK include/linux/netfilter.h:308 [inline] ip_rcv+0x16c/0x180 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core+0xb3/0xe0 net/core/dev.c:5624 __netif_receive_skb+0x21/0xd0 net/core/dev.c:5738 netif_receive_skb_internal net/core/dev.c:5824 [inline] netif_receive_skb+0x271/0x300 net/core/dev.c:5884 tun_rx_batched drivers/net/tun.c:1549 [inline] tun_get_user+0x24db/0x2c50 drivers/net/tun.c:2002 tun_chr_write_iter+0x107/0x1a0 drivers/net/tun.c:2048 new_sync_write fs/read_write.c:497 [inline] vfs_write+0x76f/0x8d0 fs/read_write.c:590 ksys_write+0xbf/0x190 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x41/0x50 fs/read_write.c:652 x64_sys_call+0xe66/0x1990 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x4b/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7fc44a68bc1f Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 e9 cf f5 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 3c d0 f5 ff 48 RSP: 002b:00007fc449126c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007fc44a68bc1f R ---truncated---
CVE-2024-41631 2024-07-29 N/A N/A
Buffer Overflow vulnerability in host-host NEUQ_board v.1.0 allows a remote attacker to cause a denial of service via the password.h component.
CVE-2024-41081 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: ila: block BH in ila_output() As explained in commit 1378817486d6 ("tipc: block BH before using dst_cache"), net/core/dst_cache.c helpers need to be called with BH disabled. ila_output() is called from lwtunnel_output() possibly from process context, and under rcu_read_lock(). We might be interrupted by a softirq, re-enter ila_output() and corrupt dst_cache data structures. Fix the race by using local_bh_disable().
CVE-2024-41070 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Book3S HV: Prevent UAF in kvm_spapr_tce_attach_iommu_group() Al reported a possible use-after-free (UAF) in kvm_spapr_tce_attach_iommu_group(). It looks up `stt` from tablefd, but then continues to use it after doing fdput() on the returned fd. After the fdput() the tablefd is free to be closed by another thread. The close calls kvm_spapr_tce_release() and then release_spapr_tce_table() (via call_rcu()) which frees `stt`. Although there are calls to rcu_read_lock() in kvm_spapr_tce_attach_iommu_group() they are not sufficient to prevent the UAF, because `stt` is used outside the locked regions. With an artifcial delay after the fdput() and a userspace program which triggers the race, KASAN detects the UAF: BUG: KASAN: slab-use-after-free in kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm] Read of size 4 at addr c000200027552c30 by task kvm-vfio/2505 CPU: 54 PID: 2505 Comm: kvm-vfio Not tainted 6.10.0-rc3-next-20240612-dirty #1 Hardware name: 8335-GTH POWER9 0x4e1202 opal:skiboot-v6.5.3-35-g1851b2a06 PowerNV Call Trace: dump_stack_lvl+0xb4/0x108 (unreliable) print_report+0x2b4/0x6ec kasan_report+0x118/0x2b0 __asan_load4+0xb8/0xd0 kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm] kvm_vfio_set_attr+0x524/0xac0 [kvm] kvm_device_ioctl+0x144/0x240 [kvm] sys_ioctl+0x62c/0x1810 system_call_exception+0x190/0x440 system_call_vectored_common+0x15c/0x2ec ... Freed by task 0: ... kfree+0xec/0x3e0 release_spapr_tce_table+0xd4/0x11c [kvm] rcu_core+0x568/0x16a0 handle_softirqs+0x23c/0x920 do_softirq_own_stack+0x6c/0x90 do_softirq_own_stack+0x58/0x90 __irq_exit_rcu+0x218/0x2d0 irq_exit+0x30/0x80 arch_local_irq_restore+0x128/0x230 arch_local_irq_enable+0x1c/0x30 cpuidle_enter_state+0x134/0x5cc cpuidle_enter+0x6c/0xb0 call_cpuidle+0x7c/0x100 do_idle+0x394/0x410 cpu_startup_entry+0x60/0x70 start_secondary+0x3fc/0x410 start_secondary_prolog+0x10/0x14 Fix it by delaying the fdput() until `stt` is no longer in use, which is effectively the entire function. To keep the patch minimal add a call to fdput() at each of the existing return paths. Future work can convert the function to goto or __cleanup style cleanup. With the fix in place the test case no longer triggers the UAF.
CVE-2024-41098 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: ata: libata-core: Fix null pointer dereference on error If the ata_port_alloc() call in ata_host_alloc() fails, ata_host_release() will get called. However, the code in ata_host_release() tries to free ata_port struct members unconditionally, which can lead to the following: BUG: unable to handle page fault for address: 0000000000003990 PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 10 PID: 594 Comm: (udev-worker) Not tainted 6.10.0-rc5 #44 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:ata_host_release.cold+0x2f/0x6e [libata] Code: e4 4d 63 f4 44 89 e2 48 c7 c6 90 ad 32 c0 48 c7 c7 d0 70 33 c0 49 83 c6 0e 41 RSP: 0018:ffffc90000ebb968 EFLAGS: 00010246 RAX: 0000000000000041 RBX: ffff88810fb52e78 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff88813b3218c0 RDI: ffff88813b3218c0 RBP: ffff88810fb52e40 R08: 0000000000000000 R09: 6c65725f74736f68 R10: ffffc90000ebb738 R11: 73692033203a746e R12: 0000000000000004 R13: 0000000000000000 R14: 0000000000000011 R15: 0000000000000006 FS: 00007f6cc55b9980(0000) GS:ffff88813b300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000003990 CR3: 00000001122a2000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? ata_host_release.cold+0x2f/0x6e [libata] ? ata_host_release.cold+0x2f/0x6e [libata] release_nodes+0x35/0xb0 devres_release_group+0x113/0x140 ata_host_alloc+0xed/0x120 [libata] ata_host_alloc_pinfo+0x14/0xa0 [libata] ahci_init_one+0x6c9/0xd20 [ahci] Do not access ata_port struct members unconditionally.
CVE-2024-41084 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: cxl/region: Avoid null pointer dereference in region lookup cxl_dpa_to_region() looks up a region based on a memdev and DPA. It wrongly assumes an endpoint found mapping the DPA is also of a fully assembled region. When not true it leads to a null pointer dereference looking up the region name. This appears during testing of region lookup after a failure to assemble a BIOS defined region or if the lookup raced with the assembly of the BIOS defined region. Failure to clean up BIOS defined regions that fail assembly is an issue in itself and a fix to that problem will alleviate some of the impact. It will not alleviate the race condition so let's harden this path. The behavior change is that the kernel oops due to a null pointer dereference is replaced with a dev_dbg() message noting that an endpoint was mapped. Additional comments are added so that future users of this function can more clearly understand what it provides.
CVE-2024-6576 2024-07-29 N/A 7.3 HIGH
Improper Authentication vulnerability in Progress MOVEit Transfer (SFTP module) can lead to Privilege Escalation.This issue affects MOVEit Transfer: from 2023.0.0 before 2023.0.12, from 2023.1.0 before 2023.1.7, from 2024.0.0 before 2024.0.3.
CVE-2024-42063 2024-07-29 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Mark bpf prog stack with kmsan_unposion_memory in interpreter mode syzbot reported uninit memory usages during map_{lookup,delete}_elem. ========== BUG: KMSAN: uninit-value in __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline] BUG: KMSAN: uninit-value in dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796 __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline] dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796 ____bpf_map_lookup_elem kernel/bpf/helpers.c:42 [inline] bpf_map_lookup_elem+0x5c/0x80 kernel/bpf/helpers.c:38 ___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997 __bpf_prog_run256+0xb5/0xe0 kernel/bpf/core.c:2237 ========== The reproducer should be in the interpreter mode. The C reproducer is trying to run the following bpf prog: 0: (18) r0 = 0x0 2: (18) r1 = map[id:49] 4: (b7) r8 = 16777216 5: (7b) *(u64 *)(r10 -8) = r8 6: (bf) r2 = r10 7: (07) r2 += -229 ^^^^^^^^^^ 8: (b7) r3 = 8 9: (b7) r4 = 0 10: (85) call dev_map_lookup_elem#1543472 11: (95) exit It is due to the "void *key" (r2) passed to the helper. bpf allows uninit stack memory access for bpf prog with the right privileges. This patch uses kmsan_unpoison_memory() to mark the stack as initialized. This should address different syzbot reports on the uninit "void *key" argument during map_{lookup,delete}_elem.